Differential Micro RNA Expression in PBMC from Multiple Sclerosis Patients

نویسندگان

  • David Otaegui
  • Sergio E. Baranzini
  • Ruben Armañanzas
  • Borja Calvo
  • Maider Muñoz-Culla
  • Puya Khankhanian
  • Iñaki Inza
  • Jose A. Lozano
  • Tamara Castillo-Triviño
  • Ana Asensio
  • Javier Olaskoaga
  • Adolfo López de Munain
چکیده

Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 64: Micro-Rna Disorder and Multiple Sclerosis

Noncoding ribonucleic acids micro-RNA is involved in the regulation of gene expression have major roles in the post-transcriptional level. A micro-RNA alone several causes down regulation of mRNA transcript of the target. Thus, small changes in the expression of a micro RNA may lead to significant changes in gene expression are different. Micro- RNA as key regulators of immune cell lineage diff...

متن کامل

Differential Expression of MiR-18b in PBMC from T1D Patients in Isfahan population

Background: Type 1 diabetes (T1D) is caused by cell-mediated autoimmune attack on pancreatic beta-cells. Previous studies highlight the role of microRNAs (miRNAs) in the pathogenesis of T1D. MiRNAs are small non-coding RNAs involved in the regulation of gene expression post-transcriptionally. In this work, miR-18b was chosen and the differential expression of it was measured between T1D patient...

متن کامل

P140: The Roles of Micro RNA in Multiple Sclerosis Disease

As one of the most common neurological disabilities in young adults, Multiple sclerosis (MS) has characteristics of inflammation, demyelination, neuro-axonal damage, and progressive prolonged disability. The disease is clinically divided into three general categories according to response to treatment: Relapsing-Remitting MS (RRMS), Primary Progressive MS (PPMS) and Secondary Progressive MS (SP...

متن کامل

Increased Expression of miR-202-3p in Patients with Relapsing-Remitting Multiple Sclerosis

Background and objectives: One of the latest studies in the genetics field is the evaluation of role of micro-RNAs as a biomarker for diagnosis of multiple sclerosis (MS), which is a demyelinating disease of the central nervous system (CNS) and emerges in the form of numerous small and large plaques in white matter in the brain and spinal cord. This disease could be associated with several comp...

متن کامل

Alteration of OGG1, MYH and MTH1 genes expression in relapsing-remitting multiple sclerosis patients

Introduction: Previous studies revealed that oxidative stress is elevated in multiple sclerosis (MS). It can harm to biological macromolecules such as DNA. However, the molecular mechanism in protection of genetic information from DNA damages is not clear in MS disease. In this study the expression level of some important genes of OGG1 and MYH involved in base excision repair pathway and, MTH1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009